

D943-P185L-2

NIR Acousto-Optic Deflector

0421

The D943-P185 is a beam steered, medium resolution, high speed AO deflector designed for use with laser diodes operating in the 750-850nm wavelength region. In addition, the expanded RF bandwidth and large active aperture of this device are well suited to double-pass NIR frequency shifting applications.

SPECIFICATIONS

Operating Wavelength: Interaction Material: Laser Wavelength: Acoustic Velocity: Active Aperture: Centre Frequency: RF Bandwidth: Diffraction Efficiency: Input Bragg Angle @ fc: Separation Angle @ fc: Scan Angle: Input Impedance: Access Time (τ) : $\tau \Delta f$ Resolution: Static Insertion loss: 750-850nm * PbMoO₄ 800nm * 3630 m/s 2 x 6mm 185 MHz 120MHz >30% @ 3.2 Watts (total) 19.3 mrad 38.6 mrad 26.4 mrad 50ohms (nominal) 1.6μsec 190 spots ≤ 5% (750 - 850nm)

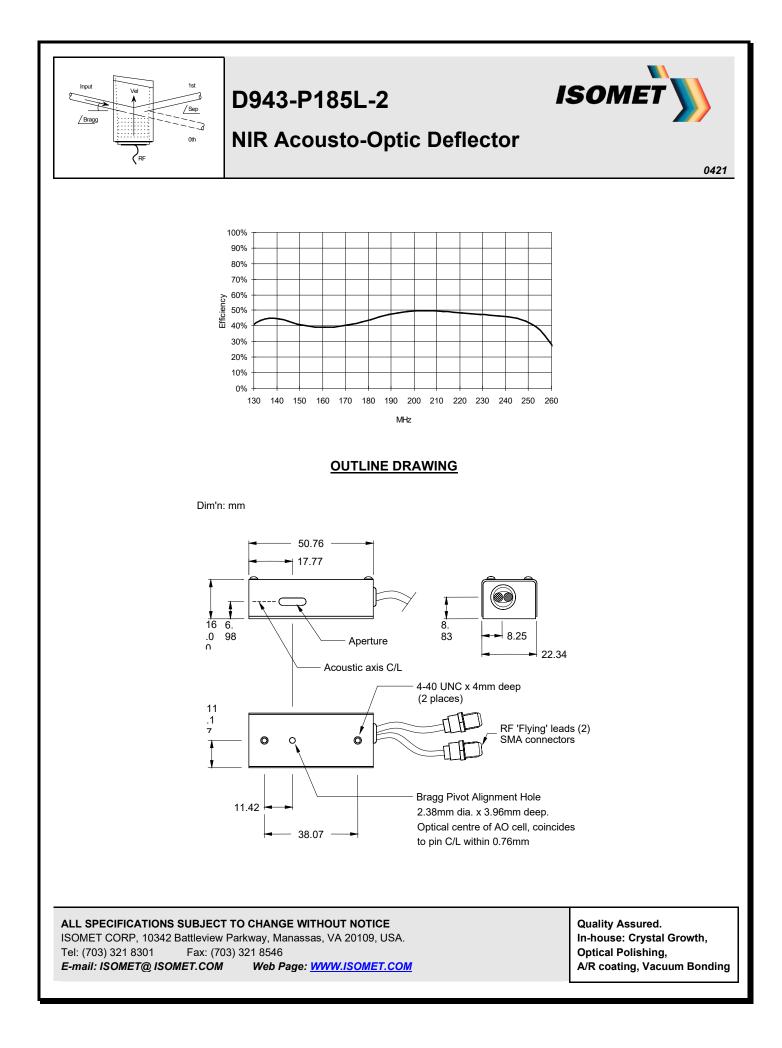
* Please contact Isomet for other wavelengths

RECOMMENDED RF DRIVE ELECTRONICS

iMS2-HF synthesizer with AF0-200T-3 amplifiers (x2)

BRAGG ANGLE AND BEAM STEERING

First order deflection efficiency is maximised when the angle (θ) of the input laser beam satisfies the Bragg condition:


$$\theta_{\text{Bragg}} = \frac{\lambda.\text{fc}}{2.\text{v}}$$

As the drive frequency is swept about the centre frequency fc so the efficiency will vary due to the Bragg angle mismatch. To minimize this effect the acoustic signal in the AO material can be made to track the optimum Bragg conditions over a wider range of frequencies. This 'beam steering' technique requires an array of electrodes on the device transducer. By applying an appropriate delay between the electrodes the resultant phase change steers the angle of the transmitted acoustic beam from the transducer in relation to the applied drive frequency.

A typical response is shown below. The optimum RF drive power is proportional to the wavelength². At NIR wavelengths this power can exceed the maximum recommended input level. The result is a reduction of the overall efficiency across the scan to around 30% at 830nm as shown overleaf.

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICEISOMET CORP, 10342 Battleview Parkway, Manassas, VA 20109, USA.Tel: (703) 321 8301Fax: (703) 321 8546E-mail: ISOMET@ ISOMET.COMWeb Page: WWW.ISOMET.COM

Quality Assured. In-house: Crystal Growth, Optical Polishing, A/R coating, Vacuum Bonding

